How to Conduct a Psychology Experiment

Conducting your first psychology experiment can be a long, complicated, and sometimes intimidating process. It can be especially confusing if you are not quite sure where to begin or which steps to take.

Like other sciences, psychology utilizes the scientific method and bases conclusions upon empirical evidence. When conducting an experiment, it is important to follow the seven basic steps of the scientific method:

  1. Ask a testable question
  2. Define your variables
  3. Conduct background research
  4. Design your experiment
  5. Perform the experiment
  6. Collect and analyze the data
  7. Draw conclusions
  8. Share the results with the scientific community

At a Glance

It's important to know the steps of the scientific method if you are conducting an experiment in psychology or other fields. The processes encompasses finding a problem you want to explore, learning what has already been discovered about the topic, determining your variables, and finally designing and performing your experiment. But the process doesn't end there! Once you've collected your data, it's time to analyze the numbers, determine what they mean, and share what you've found.

1

Find a Research Problem or Question

Doctor putting electrodes on a patient's head
William Taufic / Getty Images

Picking a research problem can be one of the most challenging steps when you are conducting an experiment. After all, there are so many different topics you might choose to investigate.

Are you stuck for an idea? Consider some of the following:

Investigate a Commonly Held Belief

Folk knowledge is a good source of questions that can serve as the basis for psychological research. For example, many people believe that staying up all night to cram for a big exam can actually hurt test performance.

You could conduct a study to compare the test scores of students who stayed up all night with the scores of students who got a full night's sleep before the exam.

Review Psychology Literature

Published studies are a great source of unanswered research questions. In many cases, the authors will even note the need for further research. Find a published study that you find intriguing, and then come up with some questions that require further exploration.

Think About Everyday Problems

There are many practical applications for psychology research. Explore various problems that you or others face each day, and then consider how you could research potential solutions. For example, you might investigate different memorization strategies to determine which methods are most effective.

2

Define Your Variables

Variables are anything that might impact the outcome of your study. An operational definition describes exactly what the variables are and how they are measured within the context of your study.

For example, if you were doing a study on the impact of sleep deprivation on driving performance, you would need to operationally define sleep deprivation and driving performance.

An operational definition refers to a precise way that an abstract concept will be measured. For example, you cannot directly observe and measure something like test anxiety. You can, however, use an anxiety scale and assign values based on how many anxiety symptoms a person is experiencing. 

In this example, you might define sleep deprivation as getting less than seven hours of sleep at night. You might define driving performance as how well a participant does on a driving test.

What is the purpose of operationally defining variables? The main purpose is control. By understanding what you are measuring, you can control for it by holding the variable constant between all groups or manipulating it as an independent variable.

3

Develop a Hypothesis

The next step is to develop a testable hypothesis that predicts how the operationally defined variables are related. In the recent example, the hypothesis might be: "Students who are sleep-deprived will perform worse than students who are not sleep-deprived on a test of driving performance."

Null Hypothesis

In order to determine if the results of the study are significant, it is essential to also have a null hypothesis. The null hypothesis is the prediction that one variable will have no association to the other variable.

In other words, the null hypothesis assumes that there will be no difference in the effects of the two treatments in our experimental and control groups.

The null hypothesis is assumed to be valid unless contradicted by the results. The experimenters can either reject the null hypothesis in favor of the alternative hypothesis or not reject the null hypothesis.

It is important to remember that not rejecting the null hypothesis does not mean that you are accepting the null hypothesis. To say that you are accepting the null hypothesis is to suggest that something is true simply because you did not find any evidence against it. This represents a logical fallacy that should be avoided in scientific research.

4

Conduct Background Research

Once you have developed a testable hypothesis, it is important to spend some time doing some background research. What do researchers already know about your topic? What questions remain unanswered?

You can learn about previous research on your topic by exploring books, journal articles, online databases, newspapers, and websites devoted to your subject.

Reading previous research helps you gain a better understanding of what you will encounter when conducting an experiment. Understanding the background of your topic provides a better basis for your own hypothesis.

After conducting a thorough review of the literature, you might choose to alter your own hypothesis. Background research also allows you to explain why you chose to investigate your particular hypothesis and articulate why the topic merits further exploration.

Tip:

As you research the history of your topic, take careful notes and create a working bibliography of your sources. This information will be valuable when you begin to write up your experiment results.

5

Select an Experimental Design

After conducting background research and finalizing your hypothesis, your next step is to develop an experimental design. There are three basic types of designs that you might utilize. Each has its own strengths and weaknesses:

Pre-Experimental Design

A single group of participants is studied, and there is no comparison between a treatment group and a control group. Examples of pre-experimental designs include case studies (one group is given a treatment and the results are measured) and pre-test/post-test studies (one group is tested, given a treatment, and then retested).

Quasi-Experimental Design

This type of experimental design does include a control group but does not include randomization. This type of design is often used if it is not feasible or ethical to perform a randomized controlled trial.

True Experimental Design

A true experimental design, also known as a randomized controlled trial, includes both of the elements that pre-experimental designs and quasi-experimental designs lack—control groups and random assignment to groups.

6

Standardize Your Procedures

In order to arrive at legitimate conclusions, it is essential to compare apples to apples.

Each participant in each group must receive the same treatment under the same conditions.

For example, in our hypothetical study on the effects of sleep deprivation on driving performance, the driving test must be administered to each participant in the same way. The driving course must be the same, the obstacles faced must be the same, and the time given must be the same.

7

Choose Your Participants

In addition to making sure that the testing conditions are standardized, it is also essential to ensure that your pool of participants is the same.

If the individuals in your control group (those who are not sleep deprived) all happen to be amateur race car drivers while your experimental group (those that are sleep deprived) are all people who just recently earned their driver's licenses, your experiment will lack standardization.

When choosing subjects, there are some different techniques you can use.

Simple Random Sample

In a simple random sample, the participants are randomly selected from a group. A simple random sample can be used to represent the entire population from which the representative sample is drawn.

Drawing a simple random sample can be helpful when you don't know a lot about the characteristics of the population.

Stratified Random Sample

Participants must be randomly selected from different subsets of the population. These subsets might include characteristics such as geographic location, age, sex, race, or socioeconomic status.

Stratified random samples are more complex to carry out. However, you might opt for this method if there are key characteristics about the population that you want to explore in your research.

8

Conduct Tests and Collect Data

After you have selected participants, the next steps are to conduct your tests and collect the data. Before doing any testing, however, there are a few important concerns that need to be addressed.

Address Ethical Concerns

First, you need to be sure that your testing procedures are ethical. Generally, you will need to gain permission to conduct any type of testing with human participants by submitting the details of your experiment to your school's Institutional Review Board (IRB), sometimes referred to as the Human Subjects Committee.

Obtain Informed Consent

After you have gained approval from your institution's IRB, you will need to present informed consent forms to each participant. This form offers information on the study, the data that will be gathered, and how the results will be used. The form also gives participants the option to withdraw from the study at any point in time.

Once this step has been completed, you can begin administering your testing procedures and collecting the data.

9

Analyze the Results

After collecting your data, it is time to analyze the results of your experiment. Researchers use statistics to determine if the results of the study support the original hypothesis and if the results are statistically significant.

Statistical significance means that the study's results are unlikely to have occurred simply by chance.

The types of statistical methods you use to analyze your data depend largely on the type of data that you collected. If you are using a random sample of a larger population, you will need to utilize inferential statistics.

These statistical methods make inferences about how the results relate to the population at large.

Because you are making inferences based on a sample, it has to be assumed that there will be a certain margin of error. This refers to the amount of error in your results. A large margin of error means that there will be less confidence in your results, while a small margin of error means that you are more confident that your results are an accurate reflection of what exists in that population.

10

Share Your Results After Conducting an Experiment

Your final task in conducting an experiment is to communicate your results. By sharing your experiment with the scientific community, you are contributing to the knowledge base on that particular topic.

One of the most common ways to share research results is to publish the study in a peer-reviewed professional journal. Other methods include sharing results at conferences, in book chapters, or academic presentations.

In your case, it is likely that your class instructor will expect a formal write-up of your experiment in the same format required in a professional journal article or lab report:

What This Means For You

Designing and conducting a psychology experiment can be quite intimidating, but breaking the process down step-by-step can help. No matter what type of experiment you decide to perform, always check with your instructor and your school's institutional review board for permission before you begin.

11 Sources
Verywell Mind uses only high-quality sources, including peer-reviewed studies, to support the facts within our articles. Read our editorial process to learn more about how we fact-check and keep our content accurate, reliable, and trustworthy.
  1. NOAA SciJinks. What is the scientific method?.

  2. Nestor, PG, Schutt, RK. Research Methods in Psychology. SAGE; 2015.

  3. Andrade C. A student's guide to the classification and operationalization of variables in the conceptualization and eesign of a clinical study: Part 2Indian J Psychol Med. 2021;43(3):265-268. doi:10.1177/0253717621996151

  4. Purna Singh A, Vadakedath S, Kandi V. Clinical research: A review of study designs, hypotheses, errors, sampling types, ethics, and informed consentCureus. 2023;15(1):e33374. doi:10.7759/cureus.33374

  5. Colby College. The Experimental Method.

  6. Leite DFB, Padilha MAS, Cecatti JG. Approaching literature review for academic purposes: The Literature Review ChecklistClinics (Sao Paulo). 2019;74:e1403. doi:10.6061/clinics/2019/e1403

  7. Salkind NJ. Encyclopedia of Research Design. SAGE Publications, Inc.; 2010. doi:10.4135/9781412961288

  8. Miller CJ, Smith SN, Pugatch M. Experimental and quasi-experimental designs in implementation researchPsychiatry Res. 2020;283:112452. doi:10.1016/j.psychres.2019.06.027

  9. Nijhawan LP, Manthan D, Muddukrishna BS, et. al. Informed consent: Issues and challenges. J Adv Pharm Technol Rese. 2013;4(3):134-140. doi:10.4103/2231-4040.116779

  10. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studiesBiochem Med (Zagreb). 2021;31(1):010502. doi:10.11613/BM.2021.010502

  11. American Psychological Association. Publication Manual of the American Psychological Association (7th ed.). Washington DC: The American Psychological Association; 2019.

By Kendra Cherry, MSEd
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."